IV. Combined Ocean Outfall Data Data Summaries

This section presents the results of analyses of the combined or mixed effluent stream being discharged to the South Bay Ocean Outfall from the South Bay Wastewater Reclamation and International Wastewater Treatment Plant for 2009.

SB_ITP_COMB_EFF designates a composite sample taken at a point downstream of the discharges of both plants where the wastewater stream is a mixture of both effluents (the secondary or tertiary effluent from SBWRP and the primary effluent from the IWTP).

Sampling and monitoring analyses occurred quarterly in February, May, August and October.

Discharge limits do not apply to this combined flow; but quarterly monitoring is required.

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Annual 2009

Source: SB_ITP_COMB_EFF Date: Sample ID:	MDL	Units	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Aluminum	47	UG/L	287	195	196	212
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	2.09	2.21	3.49	2.73
Barium		UG/L	42.7	35.8	27.2	31.7
Beryllium		UG/L	ND	ND	ND	ND
Boron	7	UG/L	385	403	440	420
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	3.2	4.5	5.3	3.1
Cobalt	.85	UG/L	ND	1.1	1.0	1.0
Copper	2 37	UG/L	28.1	36.6	28.4	24.8
Iron	3/ 2	UG/L	1310	1500	1240	1170
Lead	.24	UG/L	ND 128	2.2 86.2	ND 83.4	ND 75.0
Manganese	.09	UG/L UG/L	ND	86.2 ND	83.4 ND	75.0 ND
Mercury Molybdenum	.89	UG/L	7.7	8.3	8.1	9.0
Nickel	.53	UG/L	14.8	39.4	26.0	37.4
Selenium	.28	UG/L	14.6	11.70	1.68	1.69
Silver	.4	UG/L	ND	0.5	ND	ND
Thallium	3.9	UG/L	ND ND	ND	ND ND	ND ND
Vanadium	.64	UG/L	2.5	2.0	2.2	1.4
Zinc	2.5	UG/L	69.4	42.9	44.1	34.9
=======================================		====	=========	=========	=======================================	=========
Calcium Hardness	.1	MG/L	233	244	224	225
Magnesium Hardness	.4	MG/L	166	182	179	177
Total Hardness	.4	MG/L	400	425	403	403
Total Alkalinity (bicarbonate)	20	MG/L ====	330	357	340	NA*
Calcium	.04	MG/L	94	98	90	90
Lithium	.002	MG/L	0.05	0.07	0.07	0.07
Magnesium	.1	MG/L	40	44	44	43
Potassium	.3	MG/L	22	26	26	25
Sodium	1	MG/L	278	313	321	322
Bromide	.1	==== MG/L	0.45	0.51	0.50	0.37
Chloride	7	MG/L	350	372	376	363
Fluoride	.05	MG/L	0.70	0.70	0.45	0.72
Nitrate	.04	MG/L	7.95	0.31	0.20	5.00
Ortho Phosphate	.2	MG/L	7.06	10.90	10.60	8.20
Sulfate	9	MG/L	360	400	379	370
Cyanidas Tatal		==== MC / I	0.003	0.022	0.050	
Cyanides, Total		MG/L	0.003	0.022	0.050	0.049
Sulfides-Total	.18	MG/L	ND	ND	ND	0.43
BOD (Biochemical Oxygen Demand)		MG/L	95.0	>119	83.2	NA*
Total Suspended Solids	1.4	MG/L	46.0	65.0	58.0	NA*
Volatile Suspended Solids	1.6	MG/L	36.0	49.0	45.0	NA*
Total Dissolved Solids	28	MG/L	1540	1480	1530	NA*
Settleable Solids	.1	ML/L	8.0	29.0	0.7	ND
pH		PH	7.3	7.7	7.6	7.8
Turbidity	.13	NTU	30.4	32.8	34.1	NA*
Chlorine Residual, Total	.03	MG/L	ND	ND	ND	ND
Ammonia-N	.3	MG/L	30	39	36	NA*
Total Kjeldahl Nitrogen	1.6	MG/L	39.4	46.0	44.2	44.3

 $[\]ensuremath{^{*=}}$ Not analyzed, insufficient sample volume to complete all analyses ND= Not Detected

ND= Not Detected NA= Not Analyzed NS= Not Sampled

Chromium results are for Total Chromium

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL (SB_ITP_COMB_EFF)

Temperature

ANNUAL 2009

SB_	ITP_COMB_EFF
	Temperature
	GRAE
	(C)
	========
03-FEB-2009	20.9
05-MAY-2009	22.8
04-AUG-2009	27.5
06-0CT-2009	23.9
	========
Average:	23.8
Maximum:	27.5
Minimum:	20.9

NA= Not Analyzed NS= Not Sampled

SOUTH BAY WATER RECLAMATION PLANT COMBINED EFFLUENT (SB_ITP_COMB_EFF)

Ammonia-Nitrogen and Total Cyanides

Annual 2009

	Ammonia-N .3 MG/L COMB EFF	Cyanides,Total .002 MG/L COMB EFF
==========	==========	==========
FEBRUARY -2009	30.1	0.0031
MAY -2009	38.6	0.0216
AUGUST -2009	35.8	0.0501
OCTOBER -2009	NA*	0.0494
=========	=========	==========
Average:	34.8	0.0311

ND= not detected

NR= not required
NA*= Not Analyzed, insufficient sample volume to complete all analyses

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL (SB_ITP_COMB_EFF)

Radioactivity

Annual 2009

Source	Month		Gross Alpha Radiation
			=======================================
SB_ITP_COMB_EFF	FEBRUARY	-2009	2.7 ± 2.1
SB_ITP_COMB_EFF	MAY	-2009	5.9 ± 3.5
SB_ITP_COMB_EFF	AUGUST	-2009	2.4 ± 3.1
SB_ITP_COMB_EFF	OCTOBER	-2009	0.2 ± 2.6
	=======	=====	=======================================
AVERAGE			2.8 ± 2.8

Source	Month		Gross Beta Radiation
	=======	=====	
SB_ITP_COMB_EFF	FEBRUARY	-2009	26.6 ± 5.5
SB_ITP_COMB_EFF	MAY	-2009	22.5 ± 5.2
SB_ITP_COMB_EFF	AUGUST	-2009	25.9 ± 6.6
SB_ITP_COMB_EFF	OCTOBER	-2009	23.7 ± 5.4
	=======	=====	
AVERAGE			24.7 ± 5.7

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Chlorinated Pesticide Analysis

Annual 2009

SB_ITP_COMB_SB_ITP_COMB_SB_ITP_COMB_EFF

			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte	MDL	Units	P458516	P468792	P481329	P490593
Aldrin	==== 7	==== NG/L	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	6
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA
Cis Nonachlor	3	NG/L	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016		NG/L	ND	ND	ND	ND
PCB 1221		NG/L	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242		NG/L	ND	ND	ND	ND
PCB 1248		NG/L	ND	ND	ND	ND
PCB 1254		NG/L	ND	ND	ND	ND
PCB 1260		NG/L	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND
p,p-DDE	4 8	NG/L	ND	ND	ND	ND
p,p-DDT	8 330	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Toxaphene Trans Nonachlor	330 5	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
	> 	NG/ L	ND	ND	ND	ND
Aldrin + Dieldrin	7	NG/L	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	6
DDT and derivatives	8	NG/L	0	0	0	0
Chlordane + related cmpds.	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Heptachlors	8	NG/L	0	0	0	0
		=====	========	========	========	========
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	6

ND=not detected NA=not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT COMBINED EFFLUENT

Acid Extractables

Annual 2009

Source: SB_ITP_COMB_EFF

Analyte	MDL	Units	FEB	MAY	AUG	0CT	Avg	
		=====	=====	=====	=====	=====	=====	
2-chlorophenol	1.32	UG/L	ND	ND	ND	ND	ND	
2,4-dichlorophenol	1.01	UG/L	ND	ND	ND	ND	ND	
4-chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND	ND	
2,4,6-trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND	
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND	
Phenol	1.76	UG/L	13.5	24.2	18.0	9.8	16.4	
2-nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND	
2,4-dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND	
2,4-dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND	
4-nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND	
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND	
	====	=====	=====	=====	=====	=====	=====	
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0	
Total Non-Chlorinated Phenols	2.16	UG/L	13.5	24.2	18.0	9.8	16.4	
Total Phenols	2.16	UG/L	13.5	24.2	18.0	9.8	16.4	
	====	=====	=====	=====	=====	=====	=====	
2-methylphenol	2.15	UG/L	ND	ND	ND	ND	ND	
<pre>3-methylphenol(4-MP is unresolved)</pre>		UG/L	ND	ND	ND	ND	ND	
4-methylphenol(3-MP is unresolved)	2.11	UG/L	7.1	3.4	3.7	3.3	4.4	
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND	

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT Priority Pollutants Base/Neutrals COMBINED EFFLUENT

Annual 2009

Analyte	MDL	Units	FEB	MAY	AUG	OCT	Avg
		=====		=====		=====	=====
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Anthracene Benzidine		UG/L	ND	ND	ND	ND	ND
		UG/L	ND	ND	ND	ND	ND ND
Benzo[A]anthracene 3,4-benzo(B)fluoranthene	1.1	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo[K]fluoranthene		UG/L	ND ND	ND	ND	ND	ND
Benzo[A]pyrene		UG/L	ND ND	ND	ND	ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L	ND	ND	1.7	ND	0.4
bis(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
2-chloronaphthalene		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene	1.01	UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate	2.84	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	3.96	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.05	UG/L	17.2	18.0	16.9	15.7	17.0
Dimethyl phthalate	1.44	UG/L	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND
2,6-dinitrotoluene	1.53	UG/L	ND	ND	ND	ND	ND
1,2-diphenylhydrazine	1.37	UG/L	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Nitrobenzene N-nitrosodimethylamine	1.6	UG/L UG/L	ND ND	ND	ND	ND	ND
N-nitrosodimethylamine N-nitrosodi-n-propylamine		UG/L	ND ND	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND ND	ND	ND	ND	ND ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND
=======================================		,	=====	=====		=====	=====
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
				=====	=====	=====	=====
Base/Neutral Compounds	8.96	UG/L	17.2	18.0	18.6	15.7	17.4
Additional analytes determined							
Additional analytes determined							
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Biphenyl		UG/L	ND ND	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
-							
ND=not detected							

SOUTH BAY WATER RECLAMATION PLANT COMBINED EFFLUENT

Tributyl Tin Analysis

Annual 2009

Source: SB_ITP_COMB_EFF

Analyte	MDL	Units	FEB	MAY	AUG	OCT	Avg
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributvltin	2	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL Priority Pollutants Purgeable Compounds

ANNUAL 2009

Source: SB_ITP_COMB_EFF

Source. Sb_ITF_COMb_ETT			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte		Units	P458519	P468795	P481332	P490596
Dichlorodifluoromethane		===== UG/L	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Vinyl chloride	.4	UG/L	ND.	ND.	ND.	ND
Bromomethane	.7	UG/L	ND.	ND.	ND.	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.37	* 1.5	5 2.2	2 2.38*
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	4.1	3.0	3.0	4.0
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride Benzene	.4 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
1,2-dichloroethane	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Trichloroethene	.7	UG/L	ND.	ND ND	ND ND	ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	1.3	ND	ND	ND
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	7.1	9.6	149	173
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene		UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	1.7	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Ethylbenzene Bromoform	.3 .5	UG/L	0.4 0.8	0.7 ND	0.3 ND	2.3 ND
1,1,2,2-tetrachloroethane	.5	UG/L UG/L	ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	.5	UG/L	ND ND	ND	ND	ND ND
1,4-dichlorobenzene	.4	UG/L	3.1	3.1	3.7	3.4
1,2-dichlorobenzene	.4	UG/L	ND.	ND	ND	ND
=======================================	===					========
Halomethane Purgeable Cmpnds		UG/L	0.8	0.0	0.0	0.0
Total Dichlorobenzenes	.5	===== UG/L	0.0	0.0	0.0	0.0
	===	=====		========		
Total Chloromethanes	.5	UG/L	4.1	4.5	5.2	4.0
Purgeable Compounds		UG/L	18.5	17.9	158.2	182.7
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	1.4	1.1	2.0	2.0
Acetone		UG/L	253	389	388	2050
Allyl chloride	.6	UG/L	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	0.4	ND	ND
Chloroprene	.4		ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND ND	ND	ND 10.3	ND
2-butanone	.8	UG/L	ND ND	7.4	10.2 ND	64.7 ND
Methyl methacrylate 2-nitropropane	.8 12	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
4-methyl-2-pentanone		UG/L	3.8	3.5	3.7	70.4
meta,para xylenes	.6	UG/L	1.7	2.8	1.3	11.8
ortho-xylene	.4	UG/L	1.0	1.7	0.8	7.7
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND
Benzyl chloride		UG/L	ND	ND	ND	ND
1,2,4-trichlorobenzene	.7	UG/L	ND	ND	ND	ND

 $[\]boldsymbol{*}$ The method blank for this analyte was above the MDL, value is shown for review only. ND= not detected

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL (SB_ITP_COMB_EFF)

Organophosphorus Pesticides

Annual 2009

Analyte:	MDL Units	05-MAY-2009 P468792	06-0CT-2009 P490593
Demeton O	 .15 UG/L	ND	ND
Demeton S	.08 UG/L	ND.	ND
Diazinon	.03 UG/L	ND.	ND
Guthion	.15 UG/L	ND	ND
Malathion	.03 UG/L	ND.	0.2
Parathion	.03 UG/L	ND	ND
Dichlorvos	.05 UG/L	0.4	0.3
Dibrom	.2 UG/L	ND	ND
Ethoprop	.04 UG/L	ND	ND
Phorate	.04 UG/L	ND	ND
Sulfotepp	.04 UG/L	ND	ND
Disulfoton	.02 UG/L	ND	ND
Dimethoate	.04 UG/L	ND	ND
Ronnel	.03 UG/L	ND	ND
Trichloronate	.04 UG/L	ND	ND
Merphos	.09 UG/L	ND	ND
Dichlofenthion	.03 UG/L	ND	ND
Tokuthion	.06 UG/L	ND	ND
Stirophos	.03 UG/L	ND	ND
Bolstar	.07 UG/L	ND	ND
Fensulfothion	.07 UG/L	ND	ND
EPN	.09 UG/L	ND	ND
Coumaphos	.15 UG/L	ND	ND
Mevinphos, e isomer	.05 UG/L	ND	ND
Mevinphos, z isomer	.3 UG/L	ND	ND
Chlorpyrifos	.03 UG/L	ND	ND
=======================================	=== =====	========	========
Thiophosphorus Pesticides	.15 UG/L	0.0	0.2
Demeton -0, -S	.15 UG/L	0.0	0.0
Total Organophosphorus Pesticides		0.4	0.5

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Dioxin and Furan Analysis

Annual 2009

				COMB EFF	COMB EFF	COMB EFF	COMB EFF
Analyte:	MDL	Units	Equiv	FEB P458516	MAY P468792	AUG P481329	0CT P490593
2 2 7 9 total CDD	125	PG/L	1 000	ND	ND	ND	=======
2,3,7,8-tetra CDD		PG/L PG/L	1.000	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD		PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDD		•	0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND.	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
Analyte:	MDL	Units	Equiv	COMB EFF TCCD FEB P458516	COMB EFF TCCD MAY P468792	COMB EFF TCCD AUG P481329	COMB EFF TCCD OCT P490593
	===		====	=======================================			
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND ND	ND	ND	ND ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD	98 111	PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDD		•	0.100 0.010	ND ND	ND ND	ND ND	ND ND
octa CDD		PG/L	0.001	ND ND	ND ND	ND ND	ND ND
		1 U/ L					
2 3 7 8-tatra CDE		DG/I					
2,3,7,8-tetra CDF	115	PG/L PG/I	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	115 140	PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF	115 140 118	PG/L PG/L	0.100 0.050 0.500	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF	115 140 118 147	PG/L PG/L PG/L	0.100 0.050 0.500 0.100	ND ND	ND ND ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF	115 140 118 147 107	PG/L PG/L	0.100 0.050 0.500	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF	115 140 118 147 107 152	PG/L PG/L PG/L PG/L	0.100 0.050 0.500 0.100 0.100	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	115 140 118 147 107 152 148	PG/L PG/L PG/L PG/L PG/L	0.100 0.050 0.500 0.100 0.100 0.100	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF	115 140 118 147 107 152 148 90	PG/L PG/L PG/L PG/L PG/L PG/L PG/L	0.100 0.050 0.500 0.100 0.100 0.100 0.100	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND

Above are permit required CDD/CDF isomers. $\ensuremath{\mathsf{ND}}\xspace=$ not detected